Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells.

Identifieur interne : 001B33 ( Main/Exploration ); précédent : 001B32; suivant : 001B34

A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells.

Auteurs : RBID : pubmed:20495722

English descriptors

Abstract

Dye sensitised solar cells (DSSCs) use a mesoporous TiO(2) scaffold, typically assisted by an adsorbed dye, as the main active element, responsible for the photon absorption, exciton generation and charge separation functionality. The sintering process employed in the TiO(2) active layer fabrication plays a crucial role in the formation of the nanoparticle scaffold and hence the performance of a dye sensitised solar cell, as it allows the particles to form efficient inter-crystalline electric contacts to provide high electron conductivity. The sintering temperature, with typical values in the range of 450-600 degrees C, is of particular importance for the formation as it reduces the amount of unwanted organics between the individual crystallites and determines the formation of interfaces between the nanoparticles. Furthermore, the cell design requires a conductive transparent top electrode which is typically made of fluorinated tin oxide or indium tin oxide. Here we report on a highly spatially resolved scanning electron microscopy study including focussed ion beam (FIB) milling and energy dispersive X-ray (EDX) mapping of the distribution of all relevant elements within a DSSC subsequent to a classical sintering process. We find that the above quoted temperatures cause the Sn of the transparent conductive oxide (TCO) to migrate into the TiO(2) scaffold, resulting in unwanted alterations in the composition of the complex scaffold which has a direct effect on the DSSC performance. One potential solution to this problem is the invention of novel concepts in the manufacturing of DSSCs using lower sintering temperatures.

DOI: 10.1039/c000072h
PubMed: 20495722

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells.</title>
<author>
<name sortKey="Andrei, Codrin" uniqKey="Andrei C">Codrin Andrei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Strategic Research Cluster in Advanced Biomimetic Materials for Solar Energy Conversion, University College Dublin, Dublin 4, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Strategic Research Cluster in Advanced Biomimetic Materials for Solar Energy Conversion, University College Dublin, Dublin 4</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="O Reilly, Thomas" uniqKey="O Reilly T">Thomas O'Reilly</name>
</author>
<author>
<name sortKey="Zerulla, Dominic" uniqKey="Zerulla D">Dominic Zerulla</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2010">2010</date>
<idno type="doi">10.1039/c000072h</idno>
<idno type="RBID">pubmed:20495722</idno>
<idno type="pmid">20495722</idno>
<idno type="wicri:Area/Main/Corpus">001920</idno>
<idno type="wicri:Area/Main/Curation">001920</idno>
<idno type="wicri:Area/Main/Exploration">001B33</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coloring Agents (chemistry)</term>
<term>Diffusion</term>
<term>Hot Temperature</term>
<term>Microscopy, Electron, Scanning</term>
<term>Nanoparticles (chemistry)</term>
<term>Solar Energy</term>
<term>Tin Compounds (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Coloring Agents</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Diffusion</term>
<term>Hot Temperature</term>
<term>Microscopy, Electron, Scanning</term>
<term>Solar Energy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dye sensitised solar cells (DSSCs) use a mesoporous TiO(2) scaffold, typically assisted by an adsorbed dye, as the main active element, responsible for the photon absorption, exciton generation and charge separation functionality. The sintering process employed in the TiO(2) active layer fabrication plays a crucial role in the formation of the nanoparticle scaffold and hence the performance of a dye sensitised solar cell, as it allows the particles to form efficient inter-crystalline electric contacts to provide high electron conductivity. The sintering temperature, with typical values in the range of 450-600 degrees C, is of particular importance for the formation as it reduces the amount of unwanted organics between the individual crystallites and determines the formation of interfaces between the nanoparticles. Furthermore, the cell design requires a conductive transparent top electrode which is typically made of fluorinated tin oxide or indium tin oxide. Here we report on a highly spatially resolved scanning electron microscopy study including focussed ion beam (FIB) milling and energy dispersive X-ray (EDX) mapping of the distribution of all relevant elements within a DSSC subsequent to a classical sintering process. We find that the above quoted temperatures cause the Sn of the transparent conductive oxide (TCO) to migrate into the TiO(2) scaffold, resulting in unwanted alterations in the composition of the complex scaffold which has a direct effect on the DSSC performance. One potential solution to this problem is the invention of novel concepts in the manufacturing of DSSCs using lower sintering temperatures.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20495722</PMID>
<DateCreated>
<Year>2010</Year>
<Month>06</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1463-9084</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Physical chemistry chemical physics : PCCP</Title>
<ISOAbbreviation>Phys Chem Chem Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells.</ArticleTitle>
<Pagination>
<MedlinePgn>7241-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c000072h</ELocationID>
<Abstract>
<AbstractText>Dye sensitised solar cells (DSSCs) use a mesoporous TiO(2) scaffold, typically assisted by an adsorbed dye, as the main active element, responsible for the photon absorption, exciton generation and charge separation functionality. The sintering process employed in the TiO(2) active layer fabrication plays a crucial role in the formation of the nanoparticle scaffold and hence the performance of a dye sensitised solar cell, as it allows the particles to form efficient inter-crystalline electric contacts to provide high electron conductivity. The sintering temperature, with typical values in the range of 450-600 degrees C, is of particular importance for the formation as it reduces the amount of unwanted organics between the individual crystallites and determines the formation of interfaces between the nanoparticles. Furthermore, the cell design requires a conductive transparent top electrode which is typically made of fluorinated tin oxide or indium tin oxide. Here we report on a highly spatially resolved scanning electron microscopy study including focussed ion beam (FIB) milling and energy dispersive X-ray (EDX) mapping of the distribution of all relevant elements within a DSSC subsequent to a classical sintering process. We find that the above quoted temperatures cause the Sn of the transparent conductive oxide (TCO) to migrate into the TiO(2) scaffold, resulting in unwanted alterations in the composition of the complex scaffold which has a direct effect on the DSSC performance. One potential solution to this problem is the invention of novel concepts in the manufacturing of DSSCs using lower sintering temperatures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Andrei</LastName>
<ForeName>Codrin</ForeName>
<Initials>C</Initials>
<Affiliation>Strategic Research Cluster in Advanced Biomimetic Materials for Solar Energy Conversion, University College Dublin, Dublin 4, Ireland.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>O'Reilly</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zerulla</LastName>
<ForeName>Dominic</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phys Chem Chem Phys</MedlineTA>
<NlmUniqueID>100888160</NlmUniqueID>
<ISSNLinking>1463-9076</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Coloring Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>18282-10-5</RegistryNumber>
<NameOfSubstance>stannic oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Coloring Agents</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Diffusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Solar Energy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>5</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2010</Year>
<Month>6</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1039/c000072h</ArticleId>
<ArticleId IdType="pubmed">20495722</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20495722
   |texte=   A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20495722" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024